
This paper studies multi-user multi-cell visible light communications networks in which each cell is composed of multiple light emitting diode (LED) arrays. The use of multiple LED transmitters enables each cell to support multiple users by means of precoding techniques. In such multi-user multi-cell networks, the signal for each user can be severely interfered not only by the signals that are intended to other users in the same cell, i.e., intra-cell interference, but also by the signals for users of the other cells, i.e., inter-cell interference. While intra-cell interference can be handled by the underlying precoding scheme, it is hard to deal with the inter-cell one. This paper focuses on cell coordination/cooperation strategies and their corresponding coordinated/cooperative precoder designs as the approaches to alleviate, or possibly, to cancel out the inter-cell interference. We first derive lower and upper bounds on the capacity of Gaussian interference channels with amplitude constraints on the input and the interference. Capitalizing on derived bounds and the zero-forcing scheme as the underlying precoding technique, optimal coordinated/cooperative precoding designs to maximize users’ sum-rate are investigated under the non-negativity and amplitude-limited constraints on the channel inputs. The comprehensive numerical results are presented to compare the performance of the considered coordination/cooperation strategies.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
