
arXiv: 1605.04665
handle: 11541.2/124007 , 1959.13/1346101
This paper considers density evolution for lowdensity parity-check (LDPC) and multi-edge type low-density parity-check (MET-LDPC) codes over the binary input additive white Gaussian noise channel. We first analyze three singleparameter Gaussian approximations for density evolution and discuss their accuracy under several conditions, namely at low rates, with punctured and degree-one variable nodes. We observe that the assumption of symmetric Gaussian distribution for the density-evolution messages is not accurate in the early decoding iterations, particularly at low rates and with punctured variable nodes. Thus single-parameter Gaussian approximation methods produce very poor results in these cases. Based on these observations, we then introduce a new density evolution approximation algorithm for LDPC and MET-LDPC codes. Our method is a combination of full density evolution and a single-parameter Gaussian approximation, where we assume a symmetric Gaussian distribution only after density-evolution messages closely follow a symmetric Gaussian distribution. Our method significantly improves the accuracy of the code threshold estimation. Additionally, the proposed method significantly reduces the computational time of evaluating the code threshold compared to full density evolution thereby making it more suitable for code design.
FOS: Computer and information sciences, multi-edge type LDPC codes, low-density parity check (LDPC) codes, Computer Science - Information Theory, Information Theory (cs.IT), belief-propagation, Gaussian approximation, density evolution, 003, gaussian approximation
FOS: Computer and information sciences, multi-edge type LDPC codes, low-density parity check (LDPC) codes, Computer Science - Information Theory, Information Theory (cs.IT), belief-propagation, Gaussian approximation, density evolution, 003, gaussian approximation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
