
We propose efficient forward recursive algorithms for algebraic soft-decision list decoding of Reed-Solomon codes, which utilize channel reliability information, and outperform the Koetter-Vardy (KV) algorithm with lower decoding latency. We evaluate the performance of the proposed decoding algorithms on additive white Gaussian noise and partial response channels. Simulation results show that we can achieve better performance on a modified extended-extended partial response class 4 channel than on the best possible performance of the KV algorithm, as given by the asymptotic bound for high-rate codes.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
