Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Cognitive and Developmental Systems
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
eResearch@Ozyegin
Article . 2023
Data sources: eResearch@Ozyegin
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trust in Robot–Robot Scaffolding

Authors: Murat Kirtay; Verena V. Hafner; Minoru Asada; Erhan Oztop;

Trust in Robot–Robot Scaffolding

Abstract

The study of robot trust in humans and other agents is not explored widely despite its importance for the near future human-robot symbiotic societies. Here, we propose that robots should trust partners that tend to reduce their computational load, which is analogous to human cognitive load. We test this idea by adopting an interactive visual recalling task. In the first set of experiments, the robot can get help from online instructors with different guiding strategies to decide which one it should trust based on the computational load it experiences during the experiments. The second set of experiments involves robot-robot interactions. Akin to the robot-online instructor case, the Pepper robot is asked to scaffold the learning of a less capable 'infant' robot (Nao) with or without being equipped with the cognitive abilities of theory of mind and task experience memory to assess the contribution of these cognitive abilities to scaffolding performance. Overall, the results show that robot trust based on computational/cognitive load within a sequential decision-making framework leads to effective partner selection and robot-robot scaffolding. Thus, using the computational load incurred by the cognitive processing of a robot may serve as an internal signal for assessing the trustworthiness of interaction partners.

Countries
Netherlands, Turkey
Keywords

Cognitive load, Robot trust, scaffolding, robot trust, visual recalling, Scaffolding, Decision making, decision making, Visual recalling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid
Related to Research communities