Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE/ACM Transaction...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE/ACM Transactions on Computational Biology and Bioinformatics
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scale Mutualized Perception for Vessel Border Detection in Intravascular Ultrasound Images

Authors: Xiujian Liu; Tianyuan Feng; Weipeng Liu; Liang Song; Yixuan Yuan; William Kongto Hau; Javier Del Ser; +1 Authors

Scale Mutualized Perception for Vessel Border Detection in Intravascular Ultrasound Images

Abstract

Vessel border detection in IVUS images is essential for coronary disease diagnosis. It helps to obtain the clinical indices on the inner vessel morphology to indicate the stenosis. However, the existing methods suffer the challenge of scale-dependent interference. Early methods usually rely on the hand-crafted features, thus not robust to this interference. The existing deep learning methods are also ineffective to solve this challenge, because these methods aggregate multi-scale features in the top-down way. This aggregation may bring in interference from the non-adjacent scale. Besides, they only combine the features in all scales, and thus may weaken their complementary information. We propose the scale mutualized perception to solve this challenge by considering the adjacent scales mutually to preserve their complementary information. First, the adjacent small scales contain certain semantics to locate different vessel tissues. Then, they can also perceive the global context to assist the representation of the local context in the adjacent large scale, and vice versa. It helps to distinguish the objects with similar local features. Second, the adjacent large scales provide detailed information to refine the vessel boundaries. The experiments show the effectiveness of our method in 153 IVUS sequences, and its superiority to ten state-of-the-art methods.

Related Organizations
Keywords

Deep Learning, Image Interpretation, Computer-Assisted, Humans, Coronary Artery Disease, Coronary Vessels, Ultrasonography, Interventional, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?