
pmid: 26415208
Cervical cancer is the third most common malignancy in women worldwide. It remains a leading cause of cancer-related death for women in developing countries. In order to contribute to the treatment of the cervical cancer, in our work, we try to find a few key genes resulting in the cervical cancer. Employing functions of several bioinformatics tools, we selected 143 differentially expressed genes (DEGs) associated with the cervical cancer. The results of bioinformatics analysis show that these DEGs play important roles in the development of cervical cancer. Through comparing two differential co-expression networks (DCNs) at two different states, we found a common sub-network and two differential sub-networks as well as some hub genes in three sub-networks. Moreover, some of the hub genes have been reported to be related to the cervical cancer. Those hub genes were analyzed from Gene Ontology function enrichment, pathway enrichment and protein binding three aspects. The results can help us understand the development of the cervical cancer and guide further experiments about the cervical cancer.
Gene Expression Regulation, Neoplastic, Gene Expression Profiling, Computational Biology, Humans, Uterine Cervical Neoplasms, Female, Gene Regulatory Networks
Gene Expression Regulation, Neoplastic, Gene Expression Profiling, Computational Biology, Humans, Uterine Cervical Neoplasms, Female, Gene Regulatory Networks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 118 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
