Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Biomedical Engineering
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY NC ND
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Correcting Presbyopia With Autofocusing Liquid-Lens Eyeglasses

Authors: Mohit Karkhanis; Chayanjit Ghosh; Aishwaryadev Banerjee; Nazmul Hasan; Rugved Likhite; Tridib Ghosh; Hanseup Kim; +1 Authors

Correcting Presbyopia With Autofocusing Liquid-Lens Eyeglasses

Abstract

Presbyopia, an age-related ocular disorder, is characterized by the loss in the accommodative abilities of the human ocular system and afflicts more than 1.8 billion people world-wide. Conventional methods of correcting presbyopia fragment the field of vision, inherently resulting in significant vision impairment. We demonstrate the development, assembly and evaluation of autofocusing eyeglasses for restoration of accommodation without vision field loss. The adaptive optics eyeglasses consist of two variable-focus piezoelectric liquid lenses, a time-of-flight range sensor and low-power, dual microprocessor control electronics housed within an ergonomic frame. Patient-specific accommodation deficiency models were utilized to demonstrate a high-fidelity accommodative correction. Each accommodation correction calculation was performed in ~67 ms requiring 4.86 mJ of energy. The optical resolution of the system was 10.5 cycles/degree, featuring a restorative accommodative range of 4.3 D. This system can run for up to 19 hours between charge cycles and weighs ~132 g, allowing comfortable restoration of accommodative function

12 pages, 13 figures

Related Organizations
Keywords

Optics and Photonics, Visual Acuity, Accommodation, Ocular, FOS: Physical sciences, Physics - Applied Physics, Presbyopia, Applied Physics (physics.app-ph), Physics - Medical Physics, Eyeglasses, Humans, Medical Physics (physics.med-ph)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
bronze