Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2018
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2018
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Biomedical Engineering
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Machine Learning Shock Decision Algorithm for Use During Piston-Driven Chest Compressions

Authors: Iraia Isasi; Unai Irusta; Andoni Elola; Elisabete Aramendi; Unai Ayala; Erik Alonso; Jo Kramer-Johansen; +1 Authors

A Machine Learning Shock Decision Algorithm for Use During Piston-Driven Chest Compressions

Abstract

Accurate shock decision methods during piston-driven cardiopulmonary resuscitation (CPR) would contribute to improve therapy and increase cardiac arrest survival rates. The best current methods are computationally demanding, and their accuracy could be improved. The objective of this work was to introduce a computationally efficient algorithm for shock decision during piston-driven CPR with increased accuracy.The study dataset contains 201 shockable and 844 nonshockable ECG segments from 230 cardiac arrest patients treated with the LUCAS-2 mechanical CPR device. Compression artifacts were removed using the state-of-the-art adaptive filters, and shock/no-shock discrimination features were extracted from the stationary wavelet transform analysis of the filtered ECG, and fed to a support vector machine (SVM) classifier. Quasi-stratified patient wise nested cross-validation was used for feature selection and SVM hyperparameter optimization. The procedure was repeated 50 times to statistically characterize the results.Best results were obtained for a six-feature classifier with mean (standard deviation) sensitivity, specificity, and total accuracy of 97.5 (0.4), 98.2 (0.4), and 98.1 (0.3), respectively. The algorithm presented a five-fold reduction in computational demands when compared to the best available methods, while improving their balanced accuracy by 3 points.The accuracy of the best available methods was improved while drastically reducing the computational demands.An efficient and accurate method for shock decisions during mechanical CPR is now available to improve therapy and contribute to increase cardiac arrest survival.

Country
Spain
Keywords

Support Vector Machine, piston-driven compressions, Wavelet Analysis, cardiac arrest, Decision Support Systems, Clinical, electrocardiogram (ECG), Cardiopulmonary Resuscitation, Heart Arrest, shock decision algorithm, Electrocardiography, machine learning, stationary wavelet transform (SWT), cardiopulmonary resuscitation (CPR), Humans, support vector machine (SVM), mechanical chest compressions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Green