
pmid: 22333979
Suppression of strong, spatially correlated background interference is a challenge associated with electroencephalography (EEG) source localization problems. The most common way of dealing with such interference is through the use of a prewhitening transformation based on an estimate of the covariance of the interference plus noise. This approach is based on strong assumptions regarding temporal stationarity of the data, which do not commonly hold in EEG applications. In addition, prewhitening cannot typically be implemented directly due to ill conditioning of the covariance matrix, and ad hoc regularization is often necessary. Using both simulation examples and experiments involving real EEG data with auditory evoked responses, we demonstrate that a straightforward interference projection method is significantly more robust than prewhitening for EEG source localization.
Evoked Potentials, Auditory, Brain, Humans, Magnetoencephalography, Computer Simulation, Electroencephalography, Signal Processing, Computer-Assisted, Models, Theoretical, Algorithms
Evoked Potentials, Auditory, Brain, Humans, Magnetoencephalography, Computer Simulation, Electroencephalography, Signal Processing, Computer-Assisted, Models, Theoretical, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
