
Insulin secretion from pancreatic beta cells is a fundamental physiological process, and its impairment plays a pivotal role in the development of diabetes. Mathematical modeling of insulin secretion has a long history, both on the level of the entire body and on the cellular and subcellular scale. However, little direct communication between these disparate scales has been included in mathematical models so far. Recently, we have proposed a minimal model for the incretin effect by which the gut hormone glucagon-like peptide 1 (GLP-1) enhances insulin secretion. To understand how this model couples to cellular events, we use a previously published mechanistic model of insulin secretion, and show mathematically that induction of glucose competence in beta cells by GLP-1 can underlie derivative control by GLP-1.
Insulin-Secreting Cells, Insulin Secretion, Humans, Insulin, Models, Biological, Algorithms
Insulin-Secreting Cells, Insulin Secretion, Humans, Insulin, Models, Biological, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
