<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11568/943471
Three-dimensional (3D) inverse synthetic aperture radar (ISAR) imaging has been proven feasible by combining traditional ISAR imaging and interferometry. Such technique, namely Inteferometric ISAR (InISAR), allows for the main target scattering centers to be mapped into a 3-D spatial domain, therefore forming 3-D images under the form of 3-D point clouds. 3-D InISAR overcomes some main limitations of traditional 2-D ISAR imaging, such as the problem of cross-range scaling and unknown image projection plane. Despite the great advantage of 3-D imaging over traditional 2-D imaging, some issues remain, such as scatterer scintillation, shadowing effects, poor SNR, etc., which limit the effectiveness of 3-D imaging. A solution to these issues can be found in the use of multiple 3-D views, which can be obtained exploiting either multitemporal or multiperspective configurations or a combination of both. This paper proposes this concept and develops the image fusion algorithms that are necessary to produce multiview 3-D ISAR images. The effectiveness of the proposed technique is tested by using real data collected with a multistatic InISAR system.
3D incoherent imge fusion; 3D Radar Imaging; Inverse Synthetic Aperture Radar (ISAR); Multi-view Radar Imaging; Radar Interferometry; Aerospace Engineering; Electrical and Electronic Engineering
3D incoherent imge fusion; 3D Radar Imaging; Inverse Synthetic Aperture Radar (ISAR); Multi-view Radar Imaging; Radar Interferometry; Aerospace Engineering; Electrical and Electronic Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |