<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11588/204365 , 11591/205107
This paper reports on a model developed for evaluating major system performance of a spaceborne bistatic synthetic aperture radar (SAR) for remote sensing applications. The procedure accounts for formation flying aspects. It is particularly aimed at comparison of monostatic and bistatic cases, and, as a test case, it is applied to study a novel configuration, based on a small satellite equipped with a receiving-only antenna orbiting in tandem with a large, noncooperative transmitting spacecraft, the Italian COSMO-SkyMed mission. Numerical results and plots show the effectiveness of the procedure as a mission design tool and put in evidence key issues and characteristics of the proposed spaceborne bistatic formation.
microwave remote sensing, formation flying, bistatic SAR, spaceborne remote sensing, mission design, spaceborne remote sensing; bistatic SAR; formation flying; microwave remote sensing; mission design
microwave remote sensing, formation flying, bistatic SAR, spaceborne remote sensing, mission design, spaceborne remote sensing; bistatic SAR; formation flying; microwave remote sensing; mission design
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |