
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )For nonlinear (control) systems, extended dynamic mode decomposition (EDMD) is a popular method to obtain data-driven surrogate models. Its theoretical foundation is the Koopman framework, in which one propagates observable functions of the state to obtain a linear representation in an infinite-dimensional space. In this work, we prove practical asymptotic stability of a (controlled) equilibrium for EDMD-based model predictive control, in which the optimization step is conducted using the data-based surrogate model. To this end, we derive novel bounds on the estimation error that are proportional to the norm of state and control. This enables us to show that, if the underlying system is cost controllable, this stabilizablility property is preserved. We conduct numerical simulations illustrating the proven practical asymptotic stability.
18 pages, 3 figures
Optimization and Control (math.OC), FOS: Mathematics, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Mathematics - Optimization and Control, Electrical Engineering and Systems Science - Systems and Control
Optimization and Control (math.OC), FOS: Mathematics, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Mathematics - Optimization and Control, Electrical Engineering and Systems Science - Systems and Control
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% | 
