Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian National ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Automatic Control
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Network Flows That Solve Linear Equations

Authors: Shi, Guodong; Anderson, Brian; Helmke, Uwe;

Network Flows That Solve Linear Equations

Abstract

We study distributed network flows as solvers in continuous time for the linear algebraic equation $\mathbf{z}=\mathbf{H}\mathbf{y}$. Each node $i$ has access to a row $\mathbf{h}_i^{\rm T}$ of the matrix $\mathbf{H}$ and the corresponding entry $z_i$ in the vector $\mathbf{z}$. The first "consensus + projection" flow under investigation consists of two terms, one from standard consensus dynamics and the other contributing to projection onto each affine subspace specified by the $\mathbf{h}_i$ and $z_i$. The second "projection consensus" flow on the other hand simply replaces the relative state feedback in consensus dynamics with projected relative state feedback. Without dwell-time assumption on switching graphs as well as without positively lower bounded assumption on arc weights, we prove that all node states converge to a common solution of the linear algebraic equation, if there is any. The convergence is global for the "consensus + projection" flow while local for the "projection consensus" flow in the sense that the initial values must lie on the affine subspaces. If the linear equation has no exact solutions, we show that the node states can converge to a ball around the least squares solution whose radius can be made arbitrarily small through selecting a sufficiently large gain for the "consensus + projection" flow under fixed bidirectional graphs. Semi-global convergence to approximate least squares solutions is demonstrated for general switching directed graphs under suitable conditions. It is also shown that the "projection consensus" flow drives the average of the node states to the least squares solution with complete graph. Numerical examples are provided as illustrations of the established results.

IEEE Transactions on Automatic Control, in press

Keywords

FOS: Electrical engineering, electronic engineering, information engineering, distributed computation, linear algebraic equations, Systems and Control (eess.SY), Networks, Electrical Engineering and Systems Science - Systems and Control, 510

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 1%
Green
bronze