Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Periodic Topic Mining from Massive Amounts of Data

Authors: Kazunari Ishida;

Periodic Topic Mining from Massive Amounts of Data

Abstract

Social media keeps growing and providing us with rich sources of information to understand our everyday lives, customs, and culture in the form of periodic topics. This paper proposes a method of detecting periodic topics based on autocorrelation using the time series of the document frequencies of keywords. To deal with the massive amount of data collected from social media, this method is implemented using Hadoop, which is an open-source framework for distributed processing and data storage. The implementation is evaluated in comparison with a relational database management system. Using this method, this paper analyzes blogs, news sites, and spam as information sources which serve as social and cultural indicators. Data is collected from Japanese blogs and news sites, and spam blogs are then separated from legitimate blogs using a spam filtering system. Distribution periods of keywords within each information source and weekly keywords are then extracted, and the characteristics of each information source are illustrated in terms of distribution and keywords. The results obtained using this extraction method indicate that periodic blog topics tend to be TV programs, hobbies, and social events; periodic news topics tend to be political and economic events; and periodic topics in spam tend to be automatically copied-and-pasted e-mail newsletters and affiliate offers.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!