
doi: 10.1109/swat.1969.15
A new model of abstract automata is presented employing the concept of finite automata on a network. Each normal network n provided with a one-way input tape determines a family of languages nl. A representation theorem, analogous to the Chomsky-Schutzenberger representation theorem for context free languages1, is proved for the class nl. One consequence is that nl is a principal full AFL generated by a closed set (one that contains all its prefixes). The converse is also proved, thereby establishing an equivalence between families of languages defined by normal networks and principal full AFLs generated by closed sets. The representation theorem is applied to the push-down store and Turing machine networks to obtain a stronger version of the Ginsburg, Greibach, and Harrison representation theorem for recursively enumerable sets6.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
