
Motor imagery (MI) based brain-computer interface (BCI) systems show potential applications in neural rehabilitation. In MI-BCI systems, the brain signals from movement imagination, without actual movement of limbs, can be acquired, processed and characterized to translate into actionable signals that can be used to activate external devices. However, success of such MI-BCI systems, depends on the reliable processing of the noisy, non-linear, and non-stationary brain activity signals for extraction of characteristic features for effective classification of MI activity and translation into corresponding actions. In this work, a signal processing technique, namely, empirical mode decomposition (EMD), has been proposed for processing EEG signals acquired from volunteer subjects for characterizing MI activities and activity identification.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
