
handle: 11573/495661
In this paper image based visual servo approach for 3D translational motion and yaw rotation of an under-actuated flying robot is considered. Taking into account the complexity of dynamics of flying robots, main objective of this paper is to consider the dynamics of these robots in designing an image based control strategy. Inertial information of the robot orientation is combined with image information in order to have overall system dynamics in a fashion to apply full dynamic image based controller. Suitable perspective image moments are used in order to have satisfactory trajectories in image space and Cartesian coordinates. A nonlinear controller for the full dynamics of the system is designed. Simulation results are presented to validate the designed controller.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
