Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robustness of different TMR granularities in shared wishbone architectures on SRAM FPGA

Authors: Uli Kretzschmar; Armando Astarloa; Jesús Lázaro; M. Garay; J. Del Ser;

Robustness of different TMR granularities in shared wishbone architectures on SRAM FPGA

Abstract

Triple Module Redundancy (TMR) is a popular technique for protecting critical FPGA designs. Although automatic tools for TMR generation mostly use triplication on flip-flop level, designers may opt for different approaches. This work analyses the impact of different granularities on TMR architectures based on a coarse- and a medium-grained TMR implementation of a shared Wishbone interconnection. The actual robustness of these different implementations is measured on a Xilinx Virtex-5 FPGA by using error injection into the configuration bitstream. A specialized test setup comprising two FPGAs boards is introduced so as to allow for the execution of the robustness testing. Based on the coarse-grained architecture, a fine categorization of errors in TMR architectures can be obtained.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!