Views provided by UsageCounts
Within the context of cryptographic hardware, the term scalability refers to the ability to process operands of any size, regardless of the precision of the underlying datapath or registers. In this paper we present a simple yet effective technique for increasing the scalability of a fixed-precision Montgomery multiplier. Our idea is to extend the datapath of a Montgomery multiplier in such a way that it can also perform an ordinary multiplication of two n-bit operands (without modular reduction), yielding a 2n-bit result. This conventional (n*n-≫2n)-bit multiplication is then used as a "sub-routine" to realize arbitrary-precision Montgomery multiplication according to standard software algorithms such as Coarsely Integrated Operand Scanning (CIOS). We show that performing a 2n-bit modular multiplication on an n-bit multiplier can be done in 5n clock cycles, whereby we assume that the n-bit modular multiplication takes $n$ cycles. Extending a Montgomery multiplier for this extra functionality requires just some minor modifications of the datapath and entails a slight increase in silicon area.
Applied cryptography, : Computer science [C05] [Engineering, computing & technology], Bit-serial multiplier datapath, Scalability, Performance evaluation, TK7885-7895 Computer engineering. Computer hardware, : Sciences informatiques [C05] [Ingénierie, informatique & technologie], Montgomery multiplication
Applied cryptography, : Computer science [C05] [Engineering, computing & technology], Bit-serial multiplier datapath, Scalability, Performance evaluation, TK7885-7895 Computer engineering. Computer hardware, : Sciences informatiques [C05] [Ingénierie, informatique & technologie], Montgomery multiplication
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 2 |

Views provided by UsageCounts