Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combining optimization for cache and instruction-level parallelism

Authors: Steve Carr;

Combining optimization for cache and instruction-level parallelism

Abstract

Current architectural trends in instruction-level parallelism (ILP) have significantly increased the computational power of microprocessors. As a result, the demands on the memory system have increased dramatically. Not only do compilers need to be concerned with finding ILP to utilize machine resources effectively, but they also need to be concerned with ensuring that the resulting code has a high degree of cache locality. Previous work has concentrated either on improving ILP in nested leaps or on improving cache performance. This paper presents a performance metric that can be used to guide the optimization of nested loops considering the combined effects of ILP, data reuse and latency hiding techniques. We have implemented the technique in a source-to-source transformation system called Memoria. Preliminary experiments reveal that dramatic performance improvements for nested loops are obtainable (we regularly get at least a factor of 2 on kernels run on two different architectures).

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?