Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

All-optical rate conversion

Authors: John D. Moores; Naimish Patel; Katherine L. Hall; Kristin A. Rauschenbach; Bryan S. Robinson;

All-optical rate conversion

Abstract

100 Gbit/s TDM multi-access networks will provide guaranteed bandwidth and bandwidth-on-demand packet service to high-end users. In these networks, most of the data processing will be performed electronically. Therefore, it is essential for a receiver node to buffer the incoming ultrahigh-speed (100 Gbit/s) optical data packets, rate convert the data to electronic rates (100 MHz-10 GHz), detect and process the data. Rate-converted data is a time-dilated version of the original data, and as such, differs from demultiplexed data. Time dilation of clock and data streams to low rates has been used as a pulse-characterization technique. Such schemes enabled characterization of narrow pulses without high-speed photodiodes or mechanical translation stages. We demonstrate that an optical sampling technique maybe used to achieve rate conversion in network applications where the desired time-dilated data stream rates range from 100 MHz-10 GHz. We demonstrate all-optical rate conversion of 10 Gbit/s data packets to 100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 600 Mbit/s, and 800 Mbit/s data packets. The variation in the converted data rate is achieved using a tunable-repetition-rate sampling source. Extension of this technique to rate-converting 100 Gbit/s data streams is straightforward and will be discussed.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!