
100 Gbit/s TDM multi-access networks will provide guaranteed bandwidth and bandwidth-on-demand packet service to high-end users. In these networks, most of the data processing will be performed electronically. Therefore, it is essential for a receiver node to buffer the incoming ultrahigh-speed (100 Gbit/s) optical data packets, rate convert the data to electronic rates (100 MHz-10 GHz), detect and process the data. Rate-converted data is a time-dilated version of the original data, and as such, differs from demultiplexed data. Time dilation of clock and data streams to low rates has been used as a pulse-characterization technique. Such schemes enabled characterization of narrow pulses without high-speed photodiodes or mechanical translation stages. We demonstrate that an optical sampling technique maybe used to achieve rate conversion in network applications where the desired time-dilated data stream rates range from 100 MHz-10 GHz. We demonstrate all-optical rate conversion of 10 Gbit/s data packets to 100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 600 Mbit/s, and 800 Mbit/s data packets. The variation in the converted data rate is achieved using a tunable-repetition-rate sampling source. Extension of this technique to rate-converting 100 Gbit/s data streams is straightforward and will be discussed.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
