Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Rank metric convolutional codes for Random Linear Network Coding

Authors: Antonia Wachter-Zeh; Vladimir Sidorenko;

Rank metric convolutional codes for Random Linear Network Coding

Abstract

Random Linear Network Coding (RLNC) currently attracts a lot of attention as a technique to disseminate information in a network. In this contribution, non-coherent multi-shot RLNC is considered, that means, the unknown and time variant network is used several times. In order to create dependencies between the different shots, convolutional network codes are used, in particular Partial Unit Memory (PUM) codes. Such PUM codes based on rank metric block codes are constructed and it is shown how they can efficiently be decoded when errors, erasures and deviations occur. The decoding complexity of this algorithm is cubic with the length. Further, it is described how lifting of these codes can be applied for error correction in RLNC.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!