
doi: 10.1109/mue.2007.96
In this paper, a framework of query classification is proposed for text-based image retrieval. The classification process in this framework consists of three phases. In the first phase, two basic classifiers are employed to classify the image query into certain categories. They are easily implemented but have weak adaptability to various web image queries. Therefore, in the second phase, an expanded classifier is implemented to compensate for the possible incapability of the basic classifiers. In this step, the inferential relationships extracted by information flow (IF) are exploited to disclose the meaning underneath the image query, which makes the classification more accurate. In the third phase, the strengths of all three individual classifiers are leveraged together to achieve the most possible efficient classification. The experimental results prove the effectiveness of this framework in dealing with image query classification.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
