Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Instrumentation...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Instrumentation & Measurement Magazine
Article . 2009 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://doi.org/10.1109/autest...
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RFID Threshold Accelerometer

Authors: Aaron R. Hawkins; B. Todd; M. Phillips; Stephen M. Schultz; Brian D. Jensen;

RFID Threshold Accelerometer

Abstract

This paper presents the design, manufacture, and testing of a battery-free, wireless threshold accelerometer based on a fully compliant bistable mechanism (FCBM). The FCBM stores threshold acceleration measurements mechanically, eliminating the need for electrical power. The sensorpsilas state can be read wirelessly via a passive RFID tag. Because information can be stored in these tags for over 25 years, the sensor can be left unattended for long periods of time. The FCBM portion of the sensor is laser cut from a single sheet of plastic (Delrin) and integrated with an Atmel ATA5570 RFID chip. Both elements can be manufactured at low cost. The G-force needed to exceed the shock threshold can be varied by changing the mass of the FCBM. Multiple sensors were tested using three different methods. The first method was a centrifuge, providing a constant force input. The second method was a drop test that gave an impulse input to the sensor. The final method used a shaker table to provide a sinusoidal input. In each of these tests, it was found that the FCBM sensed the correct acceleration and retained its mechanical state. A number of prototype sensors were constructed with different masses resulting in threshold accelerations between 15 and 180 Gpsilas. The overall size of these sensors was approximately 28 mm x 26 mm. The RFID tags operate at 150 kHz and were read using a commercial off-the-shelf reader with a range of approximately 3 cm. Longer range readers are readily available at higher operating frequencies.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!