
The goal of this paper is to design WALK! a cooperative, patient-driven neuroprosthetic (NP) system. In implementing sensor-supervised events to switch to subsequent medical prosthetics, NP users were able to actively control the timing of their movements. Performance and usability of WALK! was appreciated by the NP users because they were able to perceive the activities of the NP to actually support their movements. The future of NP will be based on fully implanted systems. To justify the high efforts, risks, and costs of an implantation to both NP users and health care providers, NPs have to offer true functionality that can only be achieved by a sophisticated and yet practicable control system. We believe that the WALK! control approach presented in this article can be considered a valuable contribution to the development of future neuroprosthetic systems for locomotion.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
