
pmid: 16898659
The purpose of the this article is to describe an emerging neuroimaging technology, functional near-infrared spectroscopy (fNIRs), which has several attributes that make it possible to conduct neuroimaging studies of the cortex in clinical offices and under more realistic, ecologically valid parameters. fNIRs use near-infrared light to measure changes in the concentration of oxygenated and deoxygenated hemoglobin in the cortex. Although fNIR imaging is limited to the outer cortex, it provides neuroimaging that is safe, portable, and very affordable relative to other neuroimaging technologies. It is also relatively robust to movement artifacts and can readily be integrated with other technologies such as EEG
Brain Diseases, Brain Mapping, Spectrophotometry, Infrared, Brain, Equipment Design, Equipment Failure Analysis, Animals, Humans, Diagnosis, Computer-Assisted, Evoked Potentials
Brain Diseases, Brain Mapping, Spectrophotometry, Infrared, Brain, Equipment Design, Equipment Failure Analysis, Animals, Humans, Diagnosis, Computer-Assisted, Evoked Potentials
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 250 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
