
doi: 10.1109/mcg.2005.101
pmid: 16209164
GPUs have evolved into powerful and flexible streaming processors with fully programmable floating-point pipelines and tremendous aggregate computational power and memory bandwidth. With these advances, modern GPUs can now perform more functions than the specific graphics computations for which they were designed. This article describes approaches to using GPU processing power to accelerate traditionally CPU-based tasks. We discuss some important characteristics of algorithms that make them good candidates for GPU acceleration. We discuss a specific GPU image-processing application that is a common postprocess for many physically based rendering systems.
Equipment Failure Analysis, User-Computer Interface, Computers, Computer Graphics, Data Display, Programming Languages, Signal Processing, Computer-Assisted, Equipment Design
Equipment Failure Analysis, User-Computer Interface, Computers, Computer Graphics, Data Display, Programming Languages, Signal Processing, Computer-Assisted, Equipment Design
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
