
handle: 20.500.11824/1441
Deep learning (DL) inversion of induction logging measurements is used in well geosteering for real-time imaging of the distribution of subsurface electrical conductivity. We develop a DL inversion workflow to solve 2.5-D inverse problems arising in well geosteering. The inversion workflow employs three DL modules: a 'look-around' fault detection module and two inversion modules for reconstructing anisotropic resistivity models in the presence or absence of fault planes, respectively. Our DL approach is capable of detecting and quantifying arbitrary dipping fault planes in real time. We compare inversion performance considering only short logging-while-drilling (LWD) measurements versus using both short LWD and deep-sensing measurements. The latter measurements provide enhanced depth-of-investigation while minimizing uncertainty. We also obtain improved results when using multidimensional inversion, especially nearby fault planes. This study verifies the applicability of real-time 2.5-D DL inversion across arbitrary faulted formations for well geosteering.
geosteering, Deep learning (DL), induction logging, inverse problem, fault detection
geosteering, Deep learning (DL), induction logging, inverse problem, fault detection
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
