
doi: 10.1109/lcn.2004.32
Interest in distributed storage is fueled by demand for reliability and resilience combined with ubiquitous availability. Peer-to-peer (P2P) storage networks are known for their decentralized control, self-organization, and adaptation. Advanced searching for documents and resources remains an open problem. The flooding approach favored by some P2P networks is inefficient in resource usage, but more scalable and resource-efficient solutions based on distributed hash tables (DHT) lack in query expressiveness and flexibility. In this paper, we address this issue and introduce new efficient, scalable, and completely distributed methods that strive to keep resource consumption by queries and index information as low as possible. We describe how to improve the handling of multiple subqueries combined through Boolean set operators. The need for these operators is intensified by applications to go beyond simple exact keyword matches. We discuss, optimize, and analyze appropriate extensions to support range and prefix matching in DHT.
info:eu-repo/classification/ddc/004
info:eu-repo/classification/ddc/004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
