
This paper investigates a transfer learning application for predicting software faults. Detecting faulty modules in software projects is challenging due to two main issues 1) the low quality of existing handcrafted features leads to the bad performance of traditional learning models and 2) the shortage of annotated data hinders applying deep neural networks. Recently, transfer learning is a good solution to train deep neural networks with insufficient data. Our experiments for tasks of within-project and cross-project software fault prediction have shown the transferable possibility among project data. As a result, the performance of the base model is significantly improved and achieves competitive results with the state of the art method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
