
This paper describes the theory, design, implementation, simulation, and testing of an ASIC capable of generating false target radar images for countering wideband synthetic aperture and inverse synthetic aperture imaging radars. The 5.5 /spl times/ 6.1 mm IC has 81632 transistors, 132 I/O pins, and consumes 0.132 W at 70 MHz from a 3.3-V supply. An introduction to the application and operation of the ASIC in an electronic attack system is also presented. The false target image is fully programmable and the chip is capable of generating images of both small and large targets, even up to the size of an aircraft carrier. This is the first reported use of all-digital technology to generate false target radar images of large targets.
Electronic warfare, Synthetic aperture radar, Digital signal processing, Radar countermeasures, Inverse synthetic aperture radar, Digital image synthesis, Wideband imaging radar
Electronic warfare, Synthetic aperture radar, Digital signal processing, Radar countermeasures, Inverse synthetic aperture radar, Digital image synthesis, Wideband imaging radar
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
