
handle: 1721.1/144013
We propose a novel hybrid universal network-coding cryptosystem (HUNCC) to obtain secure post-quantum cryptography at high communication rates. The secure network-coding scheme we offer is hybrid in the sense that it combines information-theory security with public-key cryptography. In addition, the scheme is general and can be applied to any communication network, and to any public-key cryptosystem. Our hybrid scheme is based on the information theoretic notion of individual secrecy, which traditionally relies on the assumption that an eavesdropper can only observe a subset of the communication links between the trusted parties - an assumption that is often challenging to enforce. For this setting, several code constructions have been developed, where the messages are linearly mixed before transmission over each of the paths in a way that guarantees that an adversary which observes only a subset has sufficient uncertainty about each individual message. Instead, in this paper, we take a computational viewpoint, and construct a coding scheme in which an arbitrary secure cryptosystem is utilized on a subset of the links, while a pre-processing similar to the one in individual security is utilized. Under this scheme, we demonstrate 1) a computational security guarantee for an adversary which observes the entirety of the links 2) an information theoretic security guarantee for an adversary which observes a subset of the links, and 3) information rates which approach the capacity of the network and greatly improve upon the current solutions. A perhaps surprising consequence of our scheme is that, to guarantee a computational security level b, it is sufficient to encrypt a single link using a computational post-quantum scheme. In addition, the information rate approaches 1 as the number of communication links increases.
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Computer Science - Information Theory, Information Theory (cs.IT), Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Computer Science - Information Theory, Information Theory (cs.IT), Cryptography and Security (cs.CR)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
