
arXiv: 2303.12335
While semantic communication succeeds in efficiently transmitting due to the strong capability to extract the essential semantic information, it is still far from the intelligent or human-like communications. In this paper, we introduce an essential component, memory, into semantic communications to mimic human communications. Particularly, we investigate a deep learning (DL) based semantic communication system with memory, named Mem-DeepSC, by considering the scenario question answer task. We exploit the universal Transformer based transceiver to extract the semantic information and introduce the memory module to process the context information. Moreover, we derive the relationship between the length of semantic signal and the channel noise to validate the possibility of dynamic transmission. Specially, we propose two dynamic transmission methods to enhance the transmission reliability as well as to reduce the communication overhead by masking some unessential elements, which are recognized through training the model with mutual information. Numerical results show that the proposed Mem-DeepSC is superior to benchmarks in terms of answer accuracy and transmission efficiency, i.e., number of transmitted symbols.
12 pages
Signal Processing (eess.SP), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
Signal Processing (eess.SP), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
