<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Remote sensing with radar is typically an ill-posed linear inverse problem: a scene is to be inferred from limited measurements of scattered electric fields. Parsimonious models provide a compressed representation of the unknown scene and offer a means for regularizing the inversion task. The emerging field of compressed sensing combines nonlinear reconstruction algorithms and pseudorandom linear measurements to provide reconstruction guarantees for sparse solutions to linear inverse problems. This paper surveys the use of sparse reconstruction algorithms and randomized measurement strategies in radar processing. Although the two themes have a long history in radar literature, the accessible framework provided by compressed sensing illuminates the impact of joining these themes. Potential future directions are conjectured both for extension of theory motivated by practice and for modification of practice based on theoretical insights.
TK Electrical engineering. Electronics Nuclear engineering
TK Electrical engineering. Electronics Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 551 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |