Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/jiot.2...
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Human Short Long-Term Cognitive Memory Mechanism for Visual Monitoring in IoT-Assisted Smart Cities

Authors: Shuai Wang; Xinyu Liu; Shuai Liu; Khan Muhammad; Ali Asghar Heidari; Javier Del Ser; Victor Hugo C. de Albuquerque;

Human Short Long-Term Cognitive Memory Mechanism for Visual Monitoring in IoT-Assisted Smart Cities

Abstract

In the Industry 4.0 era, the visualization and real-time automatic monitoring of smart cities supported by the Internet of Things is becoming increasingly important. The use of filtering algorithms in smart city monitoring is a feasible method for this purpose. However, maintaining fast and accurate monitoring in complex surveillance environments with restricted resources still remains a major challenge. Since the cognitive theory in visual monitoring is difficult to realize in practice, efficient monitoring of complex environments is accordingly hard to be achieved. Moreover, current monitoring methods do not consider the particularities of the human cognitive system, so the re-monitoring ability of the process/target is weak in case of monitoring failure by the monitoring system. In order to overcome these issues, this paper proposes a novel human Short-Long Cognitive Memory mechanism for video surveillance in smart cities. In this mechanism, a memory with a high reliability target is used as a “Long-Term Memory”, whereas a memory with a low reliability target is used as a “Short-Term Memory”. During the monitoring process, the “Short-Term Memory” and “Long-Term Memory” alternation strategy is combined with the stored target appearance characteristics, ensuring that the original model in the memory will not be contaminated or mislaid by changes in the external environment (occlusion, fast motion, motion blur, and background clutter). Extensive simulations showcase that the algorithm proposed in this paper not only improves the monitoring speed without hindering its real-time operation, but also monitors and traces the monitored target accurately, ultimately improving the robustness of the detection in complex scenery, and enabling its application to IoT-assisted smart cities.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!