Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Biom...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Biomedical and Health Informatics
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sinusoidal Signal Assisted Multivariate Empirical Mode Decomposition for Brain–Computer Interfaces

Authors: Sheng Ge; Hai-Xian Wang; Wen-Ming Zheng; Yan-Hua Shi; Rui-Min Wang; Pan Lin; Jun-Feng Gao; +4 Authors

Sinusoidal Signal Assisted Multivariate Empirical Mode Decomposition for Brain–Computer Interfaces

Abstract

A brain-computer interface (BCI) is a communication approach that permits cerebral activity to control computers or external devices. Brain electrical activity recorded with electroencephalography (EEG) is most commonly used for BCI. Noise-assisted multivariate empirical mode decomposition (NA-MEMD) is a data-driven time-frequency analysis method that can be applied to nonlinear and nonstationary EEG signals for BCI data processing. However, because white Gaussian noise occupies a broad range of frequencies, some redundant components are introduced. To solve this leakage problem, in this study, we propose using a sinusoidal assisted signal that occupies the same frequency ranges as the original signals to improve MEMD performance. To verify the effectiveness of the proposed sinusoidal signal assisted MEMD (SA-MEMD) method, we compared the decomposition performances of MEMD, NA-MEMD, and the proposed SA-MEMD using synthetic signals and a real-world BCI dataset. The spectral decomposition results indicate that the proposed SA-MEMD can avoid the generation of redundant components and over decomposition, thus, substantially reduce the mode mixing and misalignment that occurs in MEMD and NA-MEMD. Moreover, using SA-MEMD as a signal preprocessing method instead of MEMD or NA-MEMD can significantly improve BCI classification accuracy and reduce calculation time, which indicates that SA-MEMD is a powerful spectral decomposition method for BCI.

Related Organizations
Keywords

Adult, Brain-Computer Interfaces, Multivariate Analysis, Imagination, Brain, Humans, Electroencephalography, Female, Signal Processing, Computer-Assisted, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!