
In [1], [2], two schemes have been proposed to recover the support of a K-sparse N-dimensional signal from noisy linear measurements. Both schemes use left-regular sparse-graph code based sensing matrices and a simple peeling-based decoding algorithm. Both the schemes require O(K logN) measurements and the first scheme require O(N logN) computations whereas the second scheme requires O(K logN) computations (sub-linear time complexity when K is sub-linear in N). We show that by replacing the left-regular ensemble with left and right regular ensemble, we can reduce the number of measurements required of these schemes to the optimal order of O(K log N/K) with decoding complexities of O(K log N/K) and O(N log N/K), respectively.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
