Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/itsc45...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dilated LSTM Networks for Short-Term Traffic Forecasting using Network-Wide Vehicle Trajectory Data

Authors: Eleni I. Vlahogianni; Panagiotis Fafoutellis; Javier Del Ser;

Dilated LSTM Networks for Short-Term Traffic Forecasting using Network-Wide Vehicle Trajectory Data

Abstract

Short-term traffic forecasting is anticipated as an always evolving research topic, boosted by the tremendous recent advances of Machine Learning and Deep Learning, as well as computational power of modern PCs. In this paper, the Dilated Recurrent Neural Networks are introduced in traffic forecasting. Their architecture promotes the deployment of long-term relations and prevents common issues of RNNs, such as exploding and vanishing gradients. The Dilated LSTM Network is exploited to perform traffic conditions forecasting using network-wide data. The data consist of GPS trajectories of ride-hailing company DiDi’s vehicles from November of 2016. After preprocessing the data and organizing them into section’s travel speed of five-minute time resolution timeseries for each one of the 498 road sections of the road network of Xi’an, China, we fed them to the Dilated LSTM Network. The model consists of four hidden layers, each of them implementing an LSTM Network with one, two and four-step dilation correspondingly. The model achieves 85% accuracy, which is improved over a classic LSTM structure, trained on the same data.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?