
A c-vertex-ranking of a graph G for a positive integer c is a labeling of the vertices of G with integers such that, for any label i, deletion of all vertices with labels >i leaves connected components, each having at most c vertices with label i. We present a parallel algorithm to find a c-vertex-ranking of a partial k-tree using the minimum number of ranks. This is the first parallel algorithm for c-vertex-ranking of a partial k-tree G, and takes O(log n) time using a polynomial number of processors on the common CRCW PRAM for any positive integer c and any fixed integer k, where n is the number of vertices in G.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
