Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Online identification of hidden Semi-Markov models

Authors: Panos Nasiopoulos; Rabab K. Ward; Maryam Azimi;

Online identification of hidden Semi-Markov models

Abstract

Hidden Markov models (HMM) are a powerful tool in signal modelling. In an HMM, the probability that signal leaves a state is constant, and hence the duration that signal stays in each state has an exponential distribution. However, this exponential density is not appropriate for a large class of physical signals. Hence, a more sophisticated model, called hidden semiMarkov models (HSMM), are used where the state durations are modelled in some form. This paper presents new signal model for hidden semiMarkov models. This model is based on state duration dependant transition probabilities, where the state duration densities are modelled with parametric distribution functions. An adaptive algorithm for online identification of HSMMs based on our signal model is presented. This algorithm is based on the 'recursive prediction error' technique, where the parameter estimates are updated adaptively in a direction that maximizes the likelihood of parameter estimates. From the numerical results it is shown that the proposed algorithms can successfully estimate the true value of parameters. These results also show that our algorithm can adaptively track the parameter's changes in time.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!