
In this work, we formulate the fixed-length distribution matching as a Bayesian inference problem. Our proposed solution is inspired from the compressed sensing paradigm and the sparse superposition (SS) codes. First, we introduce sparsity in the binary source via position modulation (PM). We then present a simple and exact matcher based on Gaussian signal quantization. At the receiver, the dematcher exploits the sparsity in the source and performs low-complexity dematching based on generalized approximate message-passing (GAMP). We show that GAMP dematcher and spatial coupling lead to asymptotically optimal performance, in the sense that the rate tends to the entropy of the target distribution with vanishing reconstruction error in a proper limit. Furthermore, we assess the performance of the dematcher on practical Hadamard-based operators. A remarkable feature of our proposed solution is the possibility to: i) perform matching at the symbol level (nonbinary); ii) perform joint channel coding and matching.
in the 2018 IEEE International Symposium on Information Theory (ISIT)
FOS: Computer and information sciences, Statistics - Machine Learning, Computer Science - Information Theory, Information Theory (cs.IT), Machine Learning (stat.ML)
FOS: Computer and information sciences, Statistics - Machine Learning, Computer Science - Information Theory, Information Theory (cs.IT), Machine Learning (stat.ML)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
