Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://research.aal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/isit.2...
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Private information retrieval from MDS coded data in distributed storage systems

Authors: Salim El Rouayheb; Razan Tajeddine;

Private information retrieval from MDS coded data in distributed storage systems

Abstract

We consider the problem of providing privacy, in the private information retrieval (PIR) sense, to users requesting data from a distributed storage system (DSS). The DSS uses an (n, k) Maximum Distance Separable (MDS) code to store the data reliably on unreliable storage nodes. Some of these nodes can be spies which report to a third party, such as an oppressive regime, which data is being requested by the user. An information theoretic PIR scheme ensures that a user can satisfy its request while revealing, to the spy nodes, no information on which data is being requested. A user can achieve PIR by downloading all the data in the DSS. However, this is not a feasible solution due to its high communication cost. We construct PIR schemes with low download communication cost. When there is b = 1 spy node in the DSS, we construct PIR schemes with download cost 1/1−R per unit of requested data (R = k/n is the code rate), achieving the information theoretic limit for linear schemes. The proposed schemes are universal since they depend on the code rate, but not on the generator matrix of the code. When there are 2 ≤ b ≤ n − k spy nodes, we devise linear PIR schemes that have download cost equal to b + k per unit of requested data.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 1%
Top 1%