
arXiv: 1311.7298
Some new results are derived concerning random coding error exponents and expurgated exponents for list decoding with a deterministic list size $L$. Two asymptotic regimes are considered, the fixed list-size regime, where $L$ is fixed independently of the block length $n$, and the exponential list-size, where $L$ grows exponentially with $n$. We first derive a general upper bound on the list-decoding average error probability, which is suitable for both regimes. This bound leads to more specific bounds in the two regimes. In the fixed list-size regime, the bound is related to known bounds and we establish its exponential tightness. In the exponential list-size regime, we establish the achievability of the well known sphere packing lower bound. Relations to guessing exponents are also provided. An immediate byproduct of our analysis in both regimes is the universality of the maximum mutual information (MMI) list decoder in the error exponent sense. Finally, we consider expurgated bounds at low rates, both using Gallager's approach and the Csisz��r-K��rner-Marton approach, which is, in general better (at least for $L=1$). The latter expurgated bound, which involves the notion of {\it multi-information}, is also modified to apply to continuous alphabet channels, and in particular, to the Gaussian memoryless channel, where the expression of the expurgated bound becomes quite explicit.
28 pages; submitted to the IEEE Trans. on Information Theory
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
