<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Consider the broadcast relay channel (BRC) which consists of a source sending information over a two user broadcast channel in presence of two relay nodes that help the transmission to the destinations. Clearly, this network with five nodes involves all the problems encountered in relay and broadcast channels. New inner bounds on the capacity region of this class of channels are derived. These results can be seen as a generalization and hence unification of previous work in this topic. Our bounds are based on the idea of recombination of message bits and various effective coding strategies for relay and broadcast channels. Capacity result is obtained for the semi-degraded BRC-CR, where one relay channel is degraded while the other one is reversely degraded. An inner and upper bound is also presented for the degraded BRC with common relay (BRC-CR), where both the relay and broadcast channel are degraded which is the capacity for the Gaussian case. Application of these results arise in the context of opportunistic cooperation of cellular networks.
5 pages, to appear in proc. IEEE ISIT, June 2010
FOS: Computer and information sciences, [MATH.MATH-IT] Mathematics [math]/Information Theory [math.IT], Computer Science - Information Theory, Information Theory (cs.IT), [INFO.INFO-IT] Computer Science [cs]/Information Theory [cs.IT], 94A15, 62B10
FOS: Computer and information sciences, [MATH.MATH-IT] Mathematics [math]/Information Theory [math.IT], Computer Science - Information Theory, Information Theory (cs.IT), [INFO.INFO-IT] Computer Science [cs]/Information Theory [cs.IT], 94A15, 62B10
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |