
Several well-known structure-based constructions of LDPC codes, for example codes based on permutation and circulant matrices and in particular, quasi-cyclic LDPC codes, can be interpreted via algebraic voltage assignments. We explain this connection and show how this idea from topological graph theory can be used to give simple proofs of many known properties of these codes. In addition, the notion of Abelian-inevitable cycle is introduced and the subgraphs giving rise to these cycles are classified. We also indicate how, by using more sophisticated voltage assignments, new classes of good LDPC codes may be obtained.
Applied Mathematics, Mathematics, 510, 620
Applied Mathematics, Mathematics, 510, 620
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
