<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this paper, a downlink communication system, in which a Base Station (BS) equipped with $M$ antennas communicates with $N$ users each equipped with $K$ receive antennas, is considered. An efficient suboptimum algorithm is proposed for selecting a set of users in order to maximize the sum-rate throughput of the system. For the asymptotic case when $N$ tends to infinity, the necessary and sufficient conditions in order to achieve the maximum sum-rate throughput, such that the difference between the achievable sum-rate and the maximum value approaches zero, is derived. The complexity of our algorithm is investigated in terms of the required amount of feedback from the users to the base station, as well as the number of searches required for selecting the users. It is shown that the proposed method is capable of achieving a large portion of the sum-rate capacity, with a very low complexity.
57 pages 5 figures
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 123 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |