Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the application of a hybrid Harmony Search algorithm to node localization in anchor-based Wireless Sensor Networks

Authors: Javier Del Ser; Itziar Landa-Torres; Roberto Lopez-Valcarce; Diana Manjarres; Massimo Vecchio; Sergio Gil-Lopez;

On the application of a hybrid Harmony Search algorithm to node localization in anchor-based Wireless Sensor Networks

Abstract

In many applications based on Wireless Sensor Networks (WSNs) with static sensor nodes, the availability of accurate location information of the network nodes may become essential. The node localization problem is to estimate all the unknown node positions, based on noisy pairwise distance measurements of nodes within range of each other. Maximum Likelihood (ML) estimation results in a non-convex problem, which is further complicated by the fact that sufficient conditions for the solution to be unique are not easily identified, especially when dealing with sparse networks. Thereby, different node configurations can provide equally good fitness results, with only one of them corresponding to the real network geometry. This paper presents a novel soft-computing localization technique based on hybridizing a Harmony Search (HS) algorithm with a local search procedure whose aim is to identify the localizability issues and mitigate its effects during the iterative process. Moreover, certain connectivity-based geometrical constraints are exploited to further reduce the areas where each sensor node can be located. Simulation results show that our approach outperforms a previously proposed meta-heuristic localization scheme based on the Simulated Annealing (SA) algorithm, in terms of both localization error and computational cost.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?