
Many real world optimization problems have multiple objectives that typically are in conflict with one another. Furthermore, at least one objective can even be dynamic. If all of these traits are present, the problem is called a dynamic multi-objective optimisation problems (DMOOPs). The non-dominated sorting genetic algorithm II (NSGA-II) is a standard or benchmark algorithm for static multi-objective optimization problems (MOOPs) that has been extended to solve DMOOPs. Once a change has been detected, an algorithm has to react appropriately, to ensure enough diversity in the population to search for new optimal solutions after the change has occurred. However, the algorithm still has to balance exploration and exploitation. Therefore, this paper investigates four change reaction strategies that introduce new diversity into the population of the dynamic non-dominated sorting genetic algorithm II (DNSGA-II) after a change in the environment has occurred. The results indicate that all strategies that only inject diversity through changing a portion of the population (and not the entire population) performed well. When the whole population was changed, the performance of DNSGA-II deteriorated.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
