<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.14243/358783 , 11568/939915 , 11585/680819
Mobile Edge Computing (MEC) opens to the opportunity of moving high-volumes of data from the cloud to locations where the information is actually accessed. In turn, the combination of MEC with the Mobile Crowdsensing approach, using a restricted number of devices with respect the number of base stations, matches the performance of the conventional MEC middleware layer ensuring the same spatial coverage. In this work, we envision a MEC architecture composed by mobile and fixed edges. Their goal is to optimize the share of contents among users by exploiting their mobility and sociality. We first present an algorithm to identify a suitable set of mobile edges and we show how such selection increases the performance of a content-sharing scenario. Our experiments are based on the ParticipAct dataset, which captures the mobility of about 170 users for 10 months. The experiments show that the number of requests that can be served mobile edges is similar to that of requests served by fixed edges, and then that mobile edges can be considered a viable (and lowcost) alternative to fixed edges.
Mobile Crowdsensing, Mobile Crowdsensing, Human-driven Edge Computing, Social Mobility, Human-driven Edge Computing; Mobile Crowdsensing; Social Mobility; Software; Signal Processing; Mathematics (all); Computer Science Applications1707 Computer Vision and Pattern Recognition; Computer Networks and Communications, Social Mobility, Human-driven Edge Computing
Mobile Crowdsensing, Mobile Crowdsensing, Human-driven Edge Computing, Social Mobility, Human-driven Edge Computing; Mobile Crowdsensing; Social Mobility; Software; Signal Processing; Mathematics (all); Computer Science Applications1707 Computer Vision and Pattern Recognition; Computer Networks and Communications, Social Mobility, Human-driven Edge Computing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |